\qquad

C.U.SHAH UNIVERSITY

Summer Examination-2018

Subject Name: Electromagnetics

Subject Code: 4TE06ELM1

Branch: B.Tech (Electrical)

Semester: 6
Date: 23/04/2018
Time: 02:30 To 05:30
Marks: 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Attempt the following questions:

1) A scalar has \qquad
A) Only DirectionB) Only Magnitude
C) Both magnitude and direction D) None of the above
2) If r is a variable of a sphere, x, y and z are Cartesian co-ordinates then \qquad
A) $\vec{r}=\sqrt{x^{2}+y^{2}+z^{2}}$
B) $\vec{r}=x^{2}+y^{2}+z^{2}$
C) $r=x+y+z \mathrm{D})$ None of the above
3) If A and B are the vectors, then $A \cdot B=B . A$
A) True
B) False
4) The equation for a line charge is given by \qquad
A) $\int p_{v} d \nu$ B) $\int p_{L} d L$ C) $\int p_{S} d S$ D) None of the above
5) If vector $\mathrm{G}=2 a_{x}-3 a_{y}-a_{z}$, the y component of the vector G is \qquad
A) 2
B) 3
C) -1
D) -3
6) For vectors A and $B, A \times B=-(B \times A)$.
A) True
B) False
7) The relation between Electric field intensity and force is \qquad
A) $E=F Q$ B) F $=\frac{F}{Q}$ C) $\left.E=\frac{F}{Q} \mathrm{D}\right)$ None of the above
8) The unit of electric field intensity is \qquad
A) Coulomb/NewtonB) Coulomb C) Newton D) Newton/Coulomb
9) If Q is the charge in a total volume v , then volume charge density $\rho=$ \qquad A) Q B) $\frac{v}{Q}$ C) $\frac{Q}{v}$ D) $Q . v$
10) The cosine angle between $2 a_{x}$ and $-a_{x}+2 a_{y}+7 a_{z}$ is \qquad
A) 0° B) 97.8°
C) 84.8°
D) 45.16°
11) The magnitude of vector $\vec{A}=2 \cos \alpha \vec{a}_{x}+2 \sin \alpha \vec{a}_{y}+7 \vec{a}_{z}=$ \qquad
A) 10 B$) 0 \mathrm{C}) 3.87$ D) 7.28
12) The unit of permittivity is given by \qquad
A) Farad/metre
B) metre/FaradC) Farad D) Farad/metre ${ }^{2}$
13) Curl of $\mathrm{H}=$ \qquad
A) ∇H B) $\nabla \times H$
C) $\nabla^{2} H$
D) ∇H^{2}
14) For any vector A unit vector $\vec{a}_{A} \cdot \vec{a}_{A}=$ \qquad
A) 0 B) 2C) 5 D$) 1$

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions
(a) If Q_{1} and Q_{2} are the point charges are located at points having position vectors \vec{r}_{1} and \vec{r}_{2}, derive the equation of force \vec{F}_{12} on charge Q_{2} due to Q_{1}.
(b) If Aand \mathbf{B} are the vectors, explain its dot product and cross product operation.

Q-3

Attempt all questions

(a) Derive the equation for electric field intensity \vec{E} for a finite volume charge with auniform charge density ρ_{v}.
(b) Given the two points, $\mathrm{C}(-3,2,1)$ and $\mathrm{D}\left(\mathrm{r}=5, \theta=20^{\circ}, \phi=70^{\circ}\right)$. Find
i) The spherical co-ordinates of \mathbf{C}.
ii) The rectangular co-ordinates of D.
(a) State and prove the divergence theorem.
(b) A chargeof $Q_{1}=3 \times 10^{-4} \mathrm{C}$ is located at $\mathrm{M}(1,2,3)$ and a charge of $Q_{2}=10^{-4} \mathrm{C}$ at
(b) The field quantities are given by $\vec{P}=2 \vec{a}_{x}-\vec{a}_{z}, \vec{Q}=2 \vec{a}_{x}-\vec{a}_{y}+2 \vec{a}_{z}$ $\vec{R}=2 \vec{a}_{x}-3 \vec{a}_{y}+\vec{a}_{z}$

Determine i) $(\vec{P}+\vec{Q}) \times(\vec{P}-\vec{Q}) \quad$ ii) $(\vec{Q} \cdot \vec{R}) \times \vec{P}$
(a) Derive the equation of Electric field intensity $\vec{E}=\frac{Q}{4 \pi \epsilon_{0} R^{2}} \vec{a}_{R}$, where $\mathrm{Q}=$

Charge located at a point where \vec{E} is desired and \vec{a}_{R} is a unit vector in the \vec{R} direction, R is the magnitude of vector \vec{R}.
(a) Derive the equation for magnetic field intensity with the help of Bio-Savart's law.
(b) State Gauss Law. Show that electric flux $\quad \psi=\oint \vec{D}_{s} \cdot d \vec{S}=Q$, where $\mathrm{Q}=$ Point

Charge $\vec{D}_{s}=$ Surface Flux Density.
[10,

Attempt all questions
(b) Given the vectors $\vec{M}=-10 \vec{a}_{x}+4 \vec{a}_{y}-8 \vec{a}_{z}$ and $\vec{N}=8 \vec{a}_{x}+7 \vec{a}_{y}-2 \vec{a}_{z}$. Find
i) A unit vector in the direction of $-\vec{M}+2 \vec{N}$.
ii) The magnitude of $\vec{N}-3 \vec{M}$.

Attempt all questions

(a) Derive the equation $W=-Q \int_{\text {init }}^{\text {final }} \vec{E} . d \vec{L}$, energy expended in moving a point charge in an electric field, where $\vec{E}=$ Electric Field, $d \vec{L}=$ distance, $\mathrm{Q}=$ point charge.

Attempt all questions

conductance, inductance and resistance.
(b) Determine the following for the given vector fields.
i) Find divergence \vec{D} at the origin if $\vec{D}=e^{-x} \sin y \vec{a}_{x}-e^{-x} \cos y \vec{a}_{y}+2 z \vec{a}_{z} \mathrm{C} / \mathrm{m}^{2}$
ii) Find divergence \vec{D} at $\mathrm{P}(2,3,-1)$ if $\vec{D}=\left(2 x y z-y^{2}\right) a_{x}+\left(x^{2} z-2 x y\right) a_{y}+x^{2} y a_{z}$ $\mathrm{C} / \mathrm{m}^{2}$.

